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Abstract: Glaucoma, a chronic neurodegenerative disease affecting the optic nerve, typically advances without noticeable
symptoms until reaching advanced stages, where it can cause irreversible vision loss. This condition represents a
substantial global health challenge, projected to increase significantly in prevalence. Early detection is paramount as it
enables interventions to prevent optic nerve damage and mitigate visual impairment. This study thoroughly reviews
structural glaucoma changes like optic disc asymmetry, neuroretinal rim thinning, and peripapillary atrophy. In addition,
it explores the increasing application of artificial intelligence (Al) models in improving glaucoma detection and
management accuracy and efficiency. Through the application of Al technologies, this article discusses how complex
computational methods may transform clinical practice in the diagnosis and prognosis of glaucoma and thereby enhance
patient outcomes as well as mitigate the worldwide burden of this incapacitating disease.
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I.  INTRODUCTION

Glaucoma is a chronic, progressive eye disease that can't be cured, which mainly damages the optic nerve, responsible for
carrying visual data from the eye to the brain. It's ranked among the leading worldwide causes of permanent blindness.
One of the most disturbing things about glaucoma is the way it creeps up on you; it typically occurs without any apparent
symptoms in its initial stages. This unobtrusive development ensures that most individuals fail to detect that they are
suffering from the disease until they have already incurred extensive and frequently permanent loss of vision [1]. It usually
begins with the progressive loss of peripheral or side vision, which is frequently overlooked because central vision is
preserved initially. As the disease advances, this loss of peripheral vision becomes more apparent, culminating in what's
described as tunnel vision—where an individual can only perceive straight ahead, with side vision lost. Glaucoma, if not
treated, can cause complete and permanent blindness. Since it usually presents no signs in the beginning, routine eye
examinations are important, particularly among those at increased risk, such as the elderly or those with a genetic
predisposition for the condition [2]. According to the World Health Organization, glaucoma is the second most common
cause of blindness globally, responsible for about 5.2 million cases, or roughly 15% of all blindness worldwide. The toll
of glaucoma is on the rise, and by 2020, it was projected that around 11.2 million people worldwide would be living with
this condition. The effects are also deeply felt at a national level; for example, in Thailand, estimates suggest that between
1.7 to 2.4 million people are grappling with glaucoma, which accounts for about 2.5 to 3.8% of the country's total population
[3]. This information highlights the significant public health challenge that glaucoma poses, particularly in nations with
aging populations and limited access to regular eye care. If not diagnosed and managed in a timely manner, glaucoma can
quietly take away the vision of millions, making it essential to focus on awareness, prevention, and early intervention in
the battle against this debilitating disease [4].

Fig. 1. Digital fundus images cropped around optic disc. (a) Main structures of a healthy optic disc and (b) glaucomatous optic
disc [5].
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To effectively develop accurate and efficient methods for detecting glaucoma, it's essential to have a thorough
understanding of the disease itself, as well as the intricate anatomical and physiological mechanisms that control the human
eye. A key factor in this process is the internal fluid dynamics of the eye, especially concerning a clear liquid called the
aqueous humor. This fluid fills the space between the cornea and the lens, playing a crucial role in maintaining intraocular
pressure (IOP) and delivering vital nutrients to various parts of the eye, which ultimately supports overall eye health [6].
Under normal conditions, our eyes maintain a careful balance between producing and draining aqueous humor, which
keeps the intraocular pressure (IOP) stable and healthy. But for those dealing with glaucoma, this balance gets thrown off
because the eye's drainage system—mainly the trabecular meshwork and Schlemm's canal—doesn't work properly. This
malfunction leads to a decrease in the outflow of aqueous humour, causing fluid to build up in the front part of the eye and
resulting in a concerning rise in IOP. High intraocular pressure is a major risk factor for glaucoma, and it can put harmful
pressure on the optic nerve fibers that send visual signals to the brain. Over time, this pressure can progressively damage
the optic nerve, leading to loss of vision and changes in the optic disc's structure, particularly the development of optic
cupping, which is a key sign of glaucoma. Figure 1 illustrates the differences between a healthy optic disc (OD) and an
optic cup (OC) in an eye affected by glaucoma. In these glaucomatous eyes, the increased 1OP worsens the optic disc
cupping, contributing to a condition called optic neuropathy, where the optic nerve fibers degenerate and visual function
declines. To assess how severe and advanced glaucoma is, doctors often use a crucial diagnostic tool known as the Cup-
to-Disc Ratio (CDR) [7]. This ratio compares the size of the optic cup to the overall size of the optic disc, with higher CDR
values typically indicating more advanced stages of the disease. Understanding these anatomical and physiological aspects
is essential for developing effective glaucoma screening and diagnostic methods that can catch the disease early and help
prevent irreversible vision loss.

Cup-to-Disc Ratio (CDR) is an important clinical measurement that is employed to track glaucoma progression, with a
healthy CDR being generally 0.5, which reflects the optimal ratio of optic cup to disc sizes [8]. A rising CDR usually
indicates increasing optic nerve damage and thus serves as an important parameter in diagnosing and managing glaucoma.
Globally, glaucoma remains a significant public health problem, involving millions of people, and emerging trends indicate
that the burden of the disease will increase substantially over the next few years as populations age and life expectancy
improves. Of the various types of glaucoma, the two most prevalent are Open-Angle Glaucoma (OAG) and Angle-Closure
Glaucoma (ACG), both advancing in different manners and with different clinical features. OAG advances gradually and
is usually asymptomatic until it is well established, whereas ACG might be associated with more acute symptoms including
pain in the eye and loss of vision. In spite of these distinctions, one of the most worrying features of glaucoma in general
is that it can be so hard to detect early, since most cases do not necessarily show any clear signs or symptoms until extensive
loss of vision has already taken place. This highlights the paramount need to create highly accurate and effective glaucoma
diagnostic methods that can detect the condition in its initial stages, enabling prompt intervention and protection against
irreversible damage to vision [9].

Il. STRUCTURAL CHANGES DUE TO GLAUCOMA

Glaucoma is an ongoing eye condition that results in permanent structural change in the eye, specifically affecting the
elements central to vision. Comprehension of these changes is required both for understanding the pathogenesis and for
making effective diagnosis. It is here that we have sought to offer an elaborate discussion of the anatomical changes brought
about by glaucoma, for it is here that such knowledge forms the basis of assessment and development of the different
diagnostic methods being employed. Out of all the structures of the eye, Optic Nerve Head (ONH) is the one most
influenced by glaucomatous damage [10]. The ONH is the site where retinal nerve fibers converge and depart from the eye
to become the optic nerve responsible for carrying information of vision to the brain. Injury to this site is a signature of
glaucoma and commonly manifests as characteristic and quantifiable structural alterations. These changes include widening
of the cup of the optic disc, neuroretinal rim thinning, and variation in the cup-to-disc ratio, all of which are potentially
definitive markers of disease progression. Most of these characteristics can be found using imaging methods like
ophthalmoscopy, where experienced practitioners can directly examine the optic disc and observe early evidence of
glaucomatous damage. Thus, by a careful evaluation of these observable structural alterations, we can improve our grasp
of the course of the disease and further hone the diagnostic techniques employed in the detection of glaucoma at an earlier,
more amenable stage [11].

Optic disc asymmetry is an important clinical finding employed in the early diagnosis and detection of glaucoma, especially
when the condition is still in its onset stage. Optic disc asymmetry is described as a detectable variation of the Cup-to-Disc
Ratio (CDR) between an individual's two eyes. In normal conditions, the CDR readings in both eyes should be fairly
comparable; however, where the difference between them increases beyond a certain level, it then forms a reliable index
of glaucomatous damage [12]. Such asymmetry becomes particularly evident in the early stages of the condition, frequently
before other signs appear, and thus forms an excellent indicator for early treatment. Of all the signs of glaucoma that can
be seen, optic disc asymmetry is arguably the most reliable and important of all the types and stages of the disease. This is
because glaucoma tends to develop unevenly in each eye, so there is often a quantitative difference in the degree of optic
nerve damage. Since this visual feature can be easily detected using imaging devices like fundus photography or
ophthalmoscopy, it is one of the most significant and tenacious visual signs utilized by optometrists and ophthalmologists
to diagnose and follow glaucoma [13].
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Loss of the neuroretinal rim is another fundamental structural alteration linked with glaucoma and is a critical factor in the
early detection and follow-up of the disease. The neuroretinal rim is defined as the portion of the optic disc between the
external boundary of the central cup and the optic disc boundary. This area holds important nerve fibers that are tasked
with transmitting visual signals from the eye to the brain. In glaucoma patients, as intraocular pressure rises and optic nerve
degeneration sets in, the optic cup starts to widen and slowly intrudes into the neuroretinal rim. With time, this can lead to
the cup reaching as far as the edge of the disc, essentially eradicating the neuroretinal rim and giving rise to the condition
of total cupping of the optic disc [14]. This structural loss is not only an unmistakable indicator of late glaucomatous
damage but also a useful early visual warning sign. Even slight thinning of the neuroretinal rim may presage the
development of glaucoma, thus functioning as an essential indicator of early detection. It is possible for clinicians to detect
these alterations with the aid of ophthalmoscopic imaging or high-tech diagnostic equipment like Optical Coherence
Tomography (OCT), which enables accurate rim thickness measurement. Thus, diligent attention to the integrity of the
neuroretinal rim is necessary in detecting glaucoma before substantial vision loss is encountered [15].

Disc hemorrhages are another significant clinical sign commonly linked with glaucoma and are useful to offer considerable
insight into the existence and evolution of the disease. These hemorrhages are small, splinter-shaped or flame-shaped
bleeding areas found in the retinal nerve fiber layer, especially at the optic disc margins. Their occurrence is particularly
relevant as they are most often associated with some forms of glaucoma, including Normal Tension Glaucoma (NTG) and
Primary Open Angle Glaucoma (POAG) [16]. Disc hemorrhages in these instances are thought to be due to microvascular
insult or mechanical stress resulting from changing or elevated intraocular pressure. Although they can occasionally be
fleeting and heal within a few weeks, their presence is usually an indicator of inciting optic nerve injury and progression
of glaucomatous change, even in patients whose intraocular pressure is still in the normal range. Therefore, detection of
disc hemorrhages by thorough observation with ophthalmoscopy or fundus photography will help to a considerable extent
in diagnosing and treating glaucoma, especially in identifying early or advancing disease when other evidence may be
inconspicuous or lacking [17].

Peripapillary Atrophy (PPA) is also an important structural alteration that can be visually detected and is usually linked
with glaucomatous damage, especially at the level of the optic disc (OD). PPA is a term used for the degeneration or
atrophy of retinal layers and the retinal pigment epithelium (RPE) near the optic disc. The deterioration can be observed
by using imaging methods and is a useful marker in glaucoma evaluation. A positive correlation has been seen between
the development of peripapillary atrophy and the evolution of glaucoma, particularly as the pathology is more evident in
the optic disc, with a matching visual field loss [18]. PPA is present in normal eyes too but not characteristic of glaucoma
alone. In glaucomatous eyes, however, pattern, degree, and prevalence differ significantly. PPA is usually divided into two
distinct zones: the alpha (o) zone, which is irregular pigmentation and mild changes in the RPE, and the beta () zone,
which signifies more marked atrophy with total disappearance of the RPE and choriocapillaris, leaving the underlying
sclera and larger choroidal vessels bare. Of these, f-zone PPA has been particularly strongly linked with Open Angle
Glaucoma (OAG), in which its presence and degree are much more frequent than in normal eyes. Thus, it is a useful
structural marker in glaucoma diagnosis and follow-up. Increased developments in imaging and visual computing
technologies have made detection and measurement of these changes more possible with high accuracy, further supporting
the credibility of PPA as a diagnosis tool in clinical practice and research [19].

i1. Al MODELS IN GLAUCOMA

Figure 2 depicts some machine learning (ML)-based models that have been utilized for the detection of glaucoma, dividing
them into two main categories: supervised learning models and unsupervised learning models. In supervised learning, the
model is trained on labeled datasets in which the input instance is associated with a known output or result. This enables
the algorithm to learn how to map inputs onto desired outputs, and it is especially good for classification problems like
determining if an eye picture signifies glaucoma [20]. Popular supervised algorithms applied in glaucoma detection are
support vector machines, decision trees, and convolutional neural networks (CNNs), which have demonstrated high
accuracy in detecting glaucomatous features on retinal images. Conversely, unsupervised learning algorithms operate
without label sets. Rather, they seek to identify hidden structures or patterns in the data by examining the input feature
relationships [21]. Such learning is applicable to group similar points or find outliers, which can prove handy in finding
new patterns or glaucoma subtypes. These include k-means clustering and PCA. All these ML methods have unique
strengths and weaknesses. Supervised models need large amounts of annotated data, often time-consuming and expensive
to acquire, while unsupervised models can be challenging to interpret and validate clinically without ground truth. Barring
these difficulties, the application of artificial intelligence (Al) in ophthalmology is transforming the diagnosis and treatment
of eye diseases such as glaucoma at a rapid pace [22]. Al, when mixed with deep learning and sophisticated image analysis,
has become an influential tool in automating diagnosis, enhancing precision, and facilitating early detection—particularly
where there is poor access to expert treatment. Al use in ocular disease is a revolutionary development in glaucoma
treatment and diagnostics, offering new opportunities for more effective and personalized eye treatment [23].

A. Supervised machine learning

Supervised machine learning (ML) has been extensively used in a range of data modalities in glaucoma research and
diagnosis, with its capability to detect, segment, predict progression, and classify the severity of the disease enhancing with
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greater accuracy and efficiency. These modalities are comprised of visual field (VF) tests, fundus photographs, optical
coherence tomography (OCT) scans, clinical histories, transcriptomic information, and other diagnostic data types, each
providing distinctive information on various facets of glaucoma pathophysiology [24]. By learning from labeled datasets
across these sources, researchers have been able to create advanced systems that can detect faint patterns and abnormalities
that may not be evident to human viewers. The performance of these models is generally measured against various
performance metrics. Specificity quantifies the capacity of the model to properly classify negatives and is calculated as the
ratio of the number of correctly classified negatives and the total number of true negative cases. Accuracy is a general
measure of model performance that indicates the ratio of all samples that are accurately classified. Recall, or sensitivity,
measures the proportion of true positive cases correctly picked up by the model. On the other hand, error rate measures the
percentage of all predictions being wrong [25]. Other key measures are precision, the ratio of true positive predictions to
all positive predictions the model makes, and the true positive rate (TPR), which reflects how well the model is able to
detect actual positive instances. The false positive rate (FPR) is the ratio of actual negatives incorrectly classified as
positive; a measure frequently examined in conjunction with TPR in Receiver Operating Characteristic (ROC) analysis.
The Area Under the ROC Curve (AUC) gives an overall summary of the ability of the model to differentiate between
classes at different settings of threshold [26]. Yet another critical metric, particularly when there are class imbalances—
something that is always present in medical data—is the Area Under the Precision-Recall Curve (AUPRC), which measures
precision against recall and gives a better-informed performance measurement in such situations [27]. Taken together,
these measures provide a full picture of the diagnostic performance of a model and can direct further development toward
more accurate, reliable, and clinically useful Al systems for glaucoma detection and care.
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Fig. 2 Various types of ML models applied to glaucoma. GMM: Gaussian Mixture Modeling; PCA: Principal
Component Analysis; NMF: Non-negative Matrix Factorization; AA: Archetypal Analysis; PCC: Pearson Correlation
Coefcient, MB: Markov Blanket; mRMR: Minimum Redundancy Maximum Relevance [28]

B. Current Challenges in Glaucoma Management

The insidious and gradual development of glaucoma poses real challenges both to conventional diagnostic techniques and
to clinicians who wish to identify the disease early enough to allow appropriate and timely intervention. One of the most
important challenges is the clinical assessment of the visual fields (VFs), which is a conventional technique employed to
measure loss of functional vision. In the initial stages of glaucoma, visual field changes may be very subtle or even
unnoticeable, and hence an accurate diagnosis becomes challenging and the chances of missing the disease till advanced
stages are high [29]. To effectively track the progression of glaucoma, it is important to have regular thorough eye check-
ups by patients. Yet, finding consistent compliance with these tests is often challenging because of a variety of barriers.
These include overall unfamiliarity with the value of early glaucoma identification, restricted availability of eye care
services—most notably in rural or underserved communities—transportation challenges, and economic barriers that can
keep people from obtaining ongoing care [30]. To the detriment of complexity, glaucoma is not a one-size-fits-all treatment.
The main aim of treatment is to lower intraocular pressure (IOP), which can slow or even stop further damage to the optic
nerve. Yet, since patients differ significantly in their response to treatment, individually tailored care regimens and regular
monitoring are essential. This requires regular modulation of medication or surgery depending on each patient's response,
thus rendering continuous assessment an integral part of successful glaucoma management [31]. These considerations all
underscore the urgency for more accessible, cost-effective, and more accurate diagnostic devices and treatment-monitoring
systems to enhance patient outcomes and mitigate the limitations of traditional care models.

IV. APPLICATIONS OF ARTIFICIAL INTELLIGENCE IN GLAUCOMA

1. Glaucoma Diagnosis Using VF Data and Machine Learning:
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Some of the progress in glaucoma diagnosis has come through the use of machine and deep learning methods, especially
using visual field (VF)-based data. Among them is the use of numerical deviation or sensitivity values from VFs as input
variables into some form of neural networks. Research has shown that such models, including machine-learning classifiers
like Multilayer Perceptrons (MLPs), Support Vector Machines (SVMs), and others, are able to detect glaucoma more
accurately than classical VF indicators output by STATPAC software, typically utilized in practice [32]. These models are
able to identify sophisticated patterns within VF data that conventional measurements might overlook, particularly in the
disease's early stages where alterations are subtle. Apart from these machine learning techniques, newer studies have used
deep convolutional neural networks (CNNs) on VF printouts directly. These models based on CNN have progressed the
field considerably by reporting high diagnostic performance, with Area Under the Curve (AUC) up to 0.93. This
performance level not only surpasses what has been possible with conventional diagnostic techniques, but in some
instances, even what human experts can achieve, as evidenced by their diagnostic accuracy [33]. Such findings highlight
the revolutionary capability of deep learning in improving early detection and glaucoma diagnosis, enabling a more
accurate and scalable scheme for clinical applications.

2. Al Applications in Glaucoma Diagnosis Using Fundus Photographs:

Fundus images, although posing some issues for in-depth convolutional neural network (CNN) analysis in terms of their
complicated visual features and differences in image quality, have nevertheless been efficiently applied in artificial
intelligence (Al)-driven glaucoma detection models [34]. Previous research on this topic was mostly focused on image
preprocessing and hand-crafted feature extraction methods, which not only improved image sharpness but also separated
anatomical structures of interest like the optic disc and cup. These early attempts resulted in the development of glaucoma
risk indices and diagnostic models with optimistic performance, and AUC values of up to 0.88 were recorded, reflecting a
high degree of discrimination between glaucomatous and normal eyes [35]. As research advances, further refinements were
introduced, with more complex image features including texture patterns and spectral information. By detecting subtle
variations of pixel intensities, distribution, and spatial correlations in the retinal images, these models were able to
distinguish between glaucomatous and normal structures more effectively. When coupled with efficient classifiers like
random forest, SVMs, and naive Bayesian models, the above techniques reached even greater diagnostic accuracy levels—
up to 91%, as reported. These developments underscore the increasing efficiency of Al in interpreting fundus photography
for glaucoma screening and show its possibility as a non-invasive, affordable, and accurate instrument for early disease
monitoring and detection [36].

3. Al Models for Glaucoma Diagnosis Based on OCT Imaging:

Optical Coherence Tomography (OCT) is now one of the most important and cutting-edge imaging technologies used for
the evaluation of glaucoma, providing superior diagnostic performance in comparison with other modalities like Scanning
Laser Polarimetry (SLP) and Short-Wavelength Automated Perimetry (SWAP). OCT captures high-resolution cross-
sectional images of retinal anatomy, enabling measurement of important anatomical features with high accuracy such as
the thickness of the Retinal Nerve Fiber Layer (RNFL), which is well established to be drastically impacted in glaucoma
[37]. Artificial intelligence (Al) algorithms, especially those that use OCT-derived properties such as RNFL thickness,
have demonstrated excellent diagnostic performance, with Area Under the Curve (AUC) values reaching up to 0.99. This
extreme level of accuracy is an indicator of their superior capability to identify healthy eyes versus glaucoma-affected eyes
even at disease onset. Additionally, deep learning methods have further extended these capabilities by inspecting both
quantitative OCT parameters and raw imaging data directly without manual feature extraction [38]. These deep learning
models have also yielded AUCs of up to 0.99, indicating the possibility of highly accurate, computerized glaucoma
diagnoses. The combination of OCT with sophisticated Al technologies is an immense synergy, greatly improving early
glaucoma detection, monitoring, and clinical management with accuracy that can match or exceed expert human review
[39].

4. Forecasting and Prognosis Using Al Models:

Artificial intelligence (Al) models in glaucoma studies have come far beyond diagnostic purposes, and today it plays a
pivotal role in forecasting disease development and onset. Such forecasting models try to predict changes in important
clinical measures such as visual field (\VF) test data and optical coherence tomography (OCT) data over time, thus allowing
clinicians to treat patients earlier and individualize treatment planning based on patient needs [40]. Through the simulation
of disease courses, these artificial intelligence models enable more individualized treatment of glaucoma, with the
possibility of delayed or halted vision loss through proactive intervention [41]. Predictive modeling has been shown in
research to be able to obtain Area Under the Curve (AUC) values between around 0.77 and as much as 0.95, which
represents a high ability to predict future functional and structural glaucoma alterations. These findings highlight the
increasing potential of Al not only to identify glaucoma but also to assist clinicians in anticipating its progression, hence
improving long-term outcomes and maximizing resource allocation in the clinical environment [42].

5. Clinical Considerations and Future Directions:

Autonomous Al models specifically intended to diagnose glaucoma are currently in the developmental stages, despite the
fact that the U.S. Food and Drug Administration (FDA) has already approved other ocular conditions like diabetic
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retinopathy and macular edema with Al-enabled tools [43]. The application of Al in glaucoma care, ranging from diagnosis
and prognosis to mass screening, has the potential to transform the management of the disease immensely by facilitating
earlier detection, customized treatment strategies, and rational utilization of resources. Yet, a number of important issues
need to be overcome before these technologies can be implemented on a large scale in clinical settings. These encompass
making the robustness and generalizability of Al models across a wide range of populations and imaging hardware, cross-
validating models with large real-world clinical trials, dealing with ethical issues including data confidentiality and bias in
algorithms, and providing transparent regulatory procedures for approval [44]. Seamless integration within current clinical
workflows and being respectful of healthcare professionals' trust are critical to successful implementation. Crossing these
barriers will be critical to unleashing the maximum potential of Al in redefining glaucoma care as a more precise,
streamlined, and accessible process [45].

V. Challenges in glaucoma

The incorporation of artificial intelligence (Al) into glaucoma management offers great promise but is accompanied by a
spectrum of substantial challenges that need to be resolved before it can be routinely applied within the clinical
environment. Perhaps the most fundamental problem arises from the subtle and insidious nature of glaucoma itself. Since
the disease usually progresses with inapparent symptoms during its early phases, conventional assessing methods like
visual field (VF) testing can be challenged to identify significant changes until significant optic nerve injury has already
taken place. This delayed diagnosis reduces the timeframe for prompt intervention [46]. Additionally, the initial visual
symptoms of glaucoma namely small alterations in side vision are so delicate that they go undetected by traditional
diagnostic techniques, calling for the creation of sophisticated new diagnostic technologies that are capable of determining
with certainty that the disease has begun to develop. The second significant challenge is providing quality control for active
patient cooperation in regular eye exams, which are crucial to tracking the development of glaucoma. Poor compliance has
several contributing factors, such as a low level of public awareness regarding the need for early detection, poor
accessibility to eye care centers located in rural or underserved regions, transportation problems, and the cost of regular
check-ups. These obstacles not only interfere with early diagnosis but also make long-term disease management more
challenging [47]. Furthermore, there is no standard treatment for glaucoma in all patients. Because patients vary in how
they respond to drugs or surgery intended to reduce intraocular pressure (IOP), ongoing monitoring and individualized
adjustments to care are key. The necessity for customized treatment protocols also highlights the value of high-quality,
affordable monitoring devices, another area where Al may be truly disruptive. Al has potential, but a few technical hurdles
must be overcome. Supervised learning models used extensively in glaucoma studies need large, high-quality labeled
datasets for efficient training. These data may be expensive and time-consuming to obtain. In addition, data variability
from differences in imaging equipment, population makeup, and clinical protocol can affect model performance and
generalizability. Another technical issue is the common occurrence of class imbalances in medical data where there are far
fewer cases of glaucoma compared to normal which can cause biased models that perform poorly on minority classes [48].
Moreover, deep learning models tend to be "black boxes," giving little explanation of how decisions are arrived at, which
can dampen trust from clinicians and slow adoption in sensitive medical settings. Finally, there are some regulatory, ethical,
and practical challenges preventing the widespread use of Al in glaucoma management. Although FDA-approved Al-
powered tools have been approved to diagnose diabetic retinopathy and macular edema, FDA approval of Al-specific
solutions for glaucoma is yet to be given. Regulatory challenges, data privacy issues, algorithmic bias, and ethical use of
patient data need to be overcome with clear and standardized practices [49]. In addition, effective adoption must be
concurrent with effortless integration into current clinical processes. Al technologies must be intuitive, interoperable with
electronic health records, and capable enough to enhance, not hinder, clinicians' workflows. Resolving these challenges is
paramount to unlock the full potential of Al in transforming glaucoma diagnosis, monitoring, and customized treatment
planning [50].

Glaucoma is a multifactorial, complex group of optic neuropathies involving progressive loss of retinal ganglion cells,
commonly secondary to increased intraocular pressure (IOP), and is the second most common cause of irreversible
blindness globally [51]. It becomes more common with increasing age and affects about 2.93% of Europeans between the
ages of 40-80 years and up to 10% aged above 90 years, with an estimated number of global cases of 111.8 million in 2040
[52]. Major risk factors are increased age, family history, diabetes, steroid exposure, high myopia, and thin corneas [52].
Assessment in diagnosis is done by ophthalmoscopy, tonometry, perimetry, and imaging modalities like OCT [51]. The
treatment is aimed at reducing IOP by the use of medications, laser treatment, and surgeries, customized according to
individual requirements and observed over time [51, 53]. Pathophysiologically, glaucoma entails oxidative stress,
mitochondrial impairment, and inflammatory dysregulation in ocular tissues [54]. Artificial intelligence has also been
found to be promising in glaucoma diagnosis with ChatGPT and other models performing as well as senior ophthalmology
residents [55]. Research on repeat selective laser trabeculoplasty and minimally invasive glaucoma surgery indicates
effective control of 10P with fewer complications [56, 57]. New therapies including antioxidant supplementation and
vascular-targeted interventions are also being explored [58, 59]. Also, developing imaging, biomarkers, and Al are pushing
glaucoma detection earlier and more precisely [60].
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Table 1 Multidimensional Comparative Analysis of Glaucoma

Category Key Findings Applications Focus Area Limitations Outcomes References
Definition Progressive Understanding | Optic nerve Complex etiology | Early identification [51]
optic disease degeneration. and variable and increased
neuropathy with | mechanisms presentation. awareness.
retinal ganglion and raising
cell loss. awareness.
Prevalence 2.93% in Public health | Epidemiology, Data Targeted screening [52]
Europeans (40— policy, aging inconsistencies and resource
80); 10% over resource demographics. across planning.
90; 111.8M planning. populations.
cases by 2040.
Risk Age, genetics, | Screeningand | Etiology and Non-specific, Better risk profiling [52]
Factors diabetes, prioritization risk multifactorial, and and preventive
steroids, high of high-risk assessment. overlapping strategies.
myopia, thin individuals. factors.
cornea, trauma.
Diagnostic VF, OCT, Early Diagnostic Costly More accurate and [51][60]
Methods imaging, detection, accuracy and technology; earlier diagnosis.
tonometry, disease tool limited access in
biomarkers; monitoring. development. rural settings.
combines
functional and
structural data.
Treatment Lowering IOP Management Therapeutic | Varies per patient; | Improved disease [51][53]
Strategies | viadrugs, laser, | and prevention | intervention. adherence control, quality of
or surgery; of vision loss. challenges. life.
tailored to
patient.
Al in Al models Diagnostic Technology- Requires Faster, scalable, and [55][60]
Glaucoma match or aid, triage, driven validation, more accessible
surpass experts remote diagnosis. regulation, and diagnosis.
in diagnosis. healthcare. clinician trust.
Pathophysio | Oxidative stress, Drug Neurodegener | Mechanisms still Identification of [54][59]
logy mitochondrial development ation not fully therapeutic targets.
dysfunction, and disease mechanisms. understood.
inflammation modeling.
contribute.
Clinical Japan’s 5th Standardizing Evidence- Varies by region | Improved outcomes [53]
Guidelines | edition stresses care and based clinical and resource through structured
personalized protocols. practice. availability. care.
I0OP control.
Innovative MIGS and Alternative Minimally Lack of long- Expanded options [57][58]
Therapies antioxidants treatments, invasive and | term, comparative with potentially
show promise; surgical adjunctive clinical data. fewer side effects.
mixed evidence. | advancement. options.
Future Focus on A
Research

VI. CONCLUSION

Glaucoma is a significant worldwide public health problem, ranking as a primary cause of irreversible blindness in the
elderly. Although its insidious course and delayed diagnosis are hallmarks, improved knowledge of the pathophysiology
of the disease, including optic nerve head damage, retinal nerve fiber layer loss, and increase in intraocular pressure, have
widely enhanced detection methods. Structural parameters such as optic disc asymmetry, loss of neuroretinal rim, and
peripapillary atrophy provide early visual markers critical for prompt intervention. At the same time, the application of
artificial intelligence (Al) to glaucoma diagnosis and prognosis has opened up a new era of precision medicine. Al and
machine learning algorithms, particularly deep learning models trained on visual field data, OCT, and fundus imaging,
have shown high accuracy (AUCs of up to 0.99), comparable to and sometimes exceeding human expert performance. In
addition, Al is being effective in predicting the course of disease, allowing for more individualized and proactive
management strategies. Still, despite all these encouraging developments, there remain some challenges to be addressed.
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These are the insidiousness of early symptoms, heterogeneity of patient treatment responses, low public consciousness,
variable access to eye care, and requirement for large, heterogeneous, and annotated datasets to learn from Al systems. On
top of that, regulatory, ethical, and integration into clinical workflows are still major hurdles to the broad adoption of
autonomous Al tools in clinical practice. In conclusion, overcoming these challenges via collaborative research,
standardized protocols, and fair technology deployment will be essential to unlocking the complete potential of Al and
advanced diagnostics for lessening the worldwide burden of glaucoma and saving vision for millions.
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